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We consider transport in the insulating regime of GaMnAs. We calculate the resistance, magnetoresistance,
and Hall effect, assuming that the Fermi energy is in the region of localized states above the valence-band
mobility edge. Both hopping and activated band transport contributions are included. The anomalous Hall
current from band states is very different from the hopping Hall current and has extrinsic �skew� and intrinsic
�Luttinger� contributions. Comparison with experiment allows us to assess the degree to which band and
hopping contribution determine each of the three transport coefficients in a particular temperature range. There
are strong indications that the insulating state transport in GaMnAs is controlled primarily by extended state,
band edge, transport rather than by variable range hopping, as reported in the literature.
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I. INTRODUCTION

Magnetically doped semiconductors constitute a very ac-
tive field of research for good reasons. As magnets, they are
expected to keep some of the useful properties of the host
system. As doped semiconductors, they have their own usual
applications now combined with new functionality. For ex-
ample, with quantum well �QW� multilayers and quantum
dot �QD� Stranski-Krastanov growth technology,1 it is pos-
sible that spins are localized in small clusters as in InMnAs
�Ref. 2� and in QD layers of MnGaAs.1 This could be used in
building small magnets, memories, and spintronic switches.
Therefore, localized state transport, magnetism of cluster-
localized states, and tunneling are very interesting and im-
portant phenomena. However, we must begin with a clear
understanding of the bulk materials, whose electronic trans-
port properties in the insulating regime we investigate here.
We demonstrate that the observed properties cannot be ex-
plained solely by hopping in homogeneous media. For this
purpose, we need to develop the hopping theory alongside
the band theory and compare their predictions. The approach
in this paper has a wide range of applications and is, we
believe, useful to the wider magnetism and device commu-
nities. The theory will enable us to treat resistance, magne-
toresistance �MR�, thermopower, and normal and anomalous
Hall effects in the high resistance regime of diluted magnetic
semiconductors.

Mn-doped semiconductors3 are disordered alloys, so one
cannot expect sharp band edges, and indeed, one should ob-
serve Anderson localized states above �for holes� the mobil-
ity edges. The long-range ferromagnetism is mediated by
holes, which lower their energy each time they interact with
a manganese spin of opposite spin. The mobile valence-band
p holes interact with the localized moments via the antifer-
romagnetic �AFM� exchange coupling,

Hpd =
Jpd

2 �
m��NS�

�
s,s�

cms
† �ss� · Smcms�, �1�

where Jpd is the hole-Mn coupling and �ss� is a vector con-
taining Pauli’s matrices, i.e., ��x ,�y ,�z�. The indices, s and

s�, indicate which terms of the 2�2 matrix we are consid-
ering. Finally, Sm is the Mn spin operator at site m and the
cms

† and cms the are creation and annihilation operators for a
carrier of spin s at site m. This Hamiltonian, applied to GaM-
nAs, has been discussed in many papers and we refer the
reader to the original literature �Ref. 3 and references
therein�. The transport and magnetism was recently subjected
to a coherent-potential approximation �CPA� treatment.4 The
CPA is a mean-field theory which can handle delocalized
states up to the short mean free path or diffusive limit, but it
does not reproduce localization. Localized states and hop-
ping transport have to be treated separately, as shown below.

Near the band edges, the eigenstates of one-particle sys-
tems are localized for energies up to the mobility edges �c.

5

The localization starts when the density of states is below a
critical value determined by the diffusivity and localization
length.6 The nature of the mobility edges in disordered mag-
nets is expected to be more complex than that of nonmag-
netic alloys, but many of the usual features should remain
valid. In a magnet such as GaMnAs, we now have two spin-
split bands, and two mobility edges. Though conductivity,
magnetoresistance, and Hall coefficient have been measured
in the insulating limit,7,8 the dependence of the mobility
edges on magnetism has not been investigated. Neither is it
clear from the present understanding of the data whether all
transport coefficients are truly in the hopping limit, or
whether there is a substantial band-edge-delocalized contri-
bution which looks like hopping. One usually says that trans-
port is in the hopping limit when the measured conductivity
scales with temperature as exp�−�

T0

T �1/4�. Here, T0 is the
renormalized Mott temperature T0=24�2.7�3 / ����� f�kB�,
with � denoting the inverse localization length,5 kB the
Boltzmann constant, ��� f� the density of states at the Fermi
level, and 2.7 the percolation factor. However, the hopping
transport with Coulomb correlation gaps often scale as
exp�−�

T0

T �1/2�, and there are many situations in which mate-
rials exhibit exp�−�

T0

T ���→0	�	1 laws, which are obvi-
ously not due to variable range hopping �VRH� between lo-
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calized states �see Ref. 9�. Emin,10 for example, has shown
that small polarons will also produce such behavior for rea-
sons not related to VRH. Indeed, one can say that almost all
disordered insulators exhibit such a weaker-than-exponential
law. Often it is due to granularity and Coulomb
correlations.9,11 Furthermore, it is often not easy to distin-
guish between ��1 /3, 1 /4, . . ., etc., because the data are
collected over a limited range. So one has to be cautious and
examine other possible scenarios. This is what we propose to
do here.

We do this by presenting a complete theory of magne-
totransport which is useful for other materials as well. How-
ever, as an application of the formalism developed here, we
concentrate our analysis on Mn-doped GaAs. On the basis of
experimental data for magnetoresistance and thermopower,
we question the assumption of Mott hopping in insulating
GaMnAs and we offer an alternative explanation. Concern-
ing the Hall effect, we recall that Allen et al.8 showed that
the anomalous Hall effect �AHE� in the insulating regime of
GaMnAs is not only anomalous in the usual sense because it
scales with magnetism but also has an anomalous sign. An
explanation of this anomaly is apparently contained in the
hopping Hall-effect model of Burkov and Balents.12 Here,
we propose an alternative theory which includes both hop-
ping and band-edge conduction.

This paper is structured as follows. We first present the
basic definition of the Hall effect in magnets. The processes
that explain transport in the insulating limit are then dis-
cussed. All the main contributions to the Hall effect are then
introduced, including hopping, intrinsic, and extrinsic, and
the behavior near the mobility edge. We then discuss the
magnetoresistance and the different contributions to it are
introduced. Following that, all the contributions to the trans-
port properties are summarized and discussed in relation
with experiments. Finally, we present a discussion of our
results. We argue that transport in the insulating regime of
the magnetic semiconductors of the GaMnAs type above 10
K is mainly one of delocalized band-edge conduction.

II. HALL EFFECT

The experimentally measured Hall coefficient RH is often
written as

RH = RN + RA,

RA = �a�xx + b�xx
2 �Mz/Bz

ext, �2�

where a and b are constants and �xx is the resistivity. Bz
ext is

the external magnetic induction, defined as �0Hz
ext, where

Hz
ext is the external magnetic field. The first term RN is the

normal Hall coefficient and scales with resistivity in the
usual way and the second RA is the anomalous term which, in
general, can have two components, one linear and the other
quadratic with resistivity,3 and is proportional to the magne-
tization Mz. The general relation for the Hall coefficient is13

RH =
�yx

Bz
ext , �3�

with

�yx =
− Re��xy�

Re��xx�Re��yy� − Re��yx�Re��xy�
, �4�

where �xy and �xx denote the transverse and normal conduc-
tivities, respectively. We may suppose that as there is no
voltage applied in the y direction �yx�xy 
�xx�yy. Also, if we
consider an isotropic system in the xy plane �xx=�yy and
thus we may write the Hall coefficient as4,14

RH =
Re��xy�Bz��

Bz
ext�Re��xx�Bz���2 . �5�

Karplus and Luttinger15 pointed out that the B field involves
the magnetic moment of the material via the internal magne-
tization Mz,

Bz = �0�Hz
ext + �1 − N�Mz� 	 Bz

ext + �0�1 − N�Mz, �6�

where N is the demagnetizing factor. Thus, the magnetization
term is implicit in the normal contribution as a shift in the
magnetic field. However this form is not normally sufficient
to explain the much larger magnetization contribution ob-
served in ferromagnets.15 Karplus and Luttinger then devel-
oped the first theory of the intrinsic AHE.15 Throughout, we
shall, for simplicity, suppose a thin film with the magnetic
field perpendicular to the plane and thus we take N=1, unless
otherwise mentioned. Let us now consider the problem of
conduction.

III. HALL EFFECT AND CONDUCTIVITY
IN THE INSULATING LIMIT

When the Fermi level is at the band edge, Anderson lo-
calization sets in, and Fermi-level transport cannot be de-
scribed using only extended states. The very low-temperature
transport process is by hopping, as shown by Allen et al.8 for
GaMnAs. These authors have also measured the Hall effect
and, as already mentioned above, observed that there is a
sign anomaly for the AHE in this regime. They argue that the
transport is by hopping from localized level to localized level
and not by thermally assisted hole ionization into the valence
band. The magnetoresistance in the insulating regime has
been measured by Van Esch et al.7 These authors constructed
a model to explain the very large magnetoresistance they
observed, which we will discuss later. However, no one
seems to have yet made a model which consistently de-
scribes resistance, magnetoresistance, and Hall effect in the
insulating regime of GaMnAs.

The ordinary phonon-assisted hopping Hall effect has al-
ready been treated rigorously and in great detail.16–18 The
extraordinary contribution reported recently by Allen et al.8

in Mn-doped GaAs can be modeled as follows. We consider
p holes in the valence-band spin-orbit coupled as in the mod-
els of Baldareshi and Lipari19 and Fiete et al.20 The holes are
bound to a negatively charged, spin 5/2, Mn ion. Fiete et al.20

also included the AFM exchange coupling of the hole spin to
the d spin.

The Hamiltonian describing the dynamics of holes local-
ized around the Mn sites and which incorporates the spin-
orbit coupling to first order is given by
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H = �
i,s

�iscis
† cis + �

i,j,s
tij�Bz + Bso�cis

† cjs

− �
i,s,s�

�i
i,s�li · ��i,s��cis
† cis�

− �
i

�B�li,z + g�i,z��Bz + hz,spin�cis
† cis. �7�

In Eq. �7�, the summation indices include the band and site
indices, i.e., j= j ,�, where � denotes the orbital, and we
again assume N=1. �is are diagonal site energies. Now con-
sider the second term, where tij�Bz+Bso� is the site-to-site
transfer term. The magnetic field is incorporated in the
Peierls phase. We recall that in the presence of the magnetic
field we have the usual Peierls phase factor,

tmn = tmn
0 e−ie/2
Bext·�Rn�Rm�. �8�

The nonlocal spin-orbit terms are not specifically included in
Eq. �7� but can be reduced, in first order, to a shift of the total
magnetic field by an amount Bso, which is included in tij and
which we consider in detail below. The atomic spin-orbit
coupling �i, in the third term in Eq. �7�, mixes angular mo-
mentum l and spin bands on the same atom. Assuming, for
the sake of argument, that we have orbital states which are p
states with lz= �1,0 ,−1� or combinations thereof, then the
coupling will flip, for example, �1,−1 /2�→ �−1,1 /2�, and
back again. The z component of the atomic spin-orbit term
�−�li,z�z� can be included in the sum of the Zeeman and
Curie-Weiss spin splitting energies for the carriers, where �B
is the Bohr magneton. This sum is denoted by hz,spin in the
fourth term of Eq. �7�.

The spin-orbit Hamiltonian in tight binding was examined
by Pareek and Bruno21 for disorder induced coupling, by
Movaghar and Cochrane14 for longitudinal and Hall trans-
ports, and by Arsenault et al.4,13 for CPA. In weak spin-orbit
coupling, the effect can be incorporated into a two-site over-
lap phase similar to the Peierls phase given by Eq. �8�.4,14,22

In the hopping limit, with no external field, the electric field
at a site i �multibands are implicit if necessary� is given by
the sum of the fields emanating from all neighbors,

Eso,i =
i��
n

eZn�r − Rn��1 − pn�
4���0�r − Rn�3 �i� . �9�

In Eq. �9�, � is the dielectric constant which screens the
acceptor site potential, Zn is the effective charge, and the
factor �1− pn� is the probability that the site n is empty and
therefore charged. In the i to j jump, the third closest site in
the pathway will contribute an electric field which produces
a net magnetic field. So the sum in Eq. �9� can be approxi-
mated to include the best neighbor to i �see Refs. 6, 17, and
23 and references therein for the definition of best neighbor�.
We can now include this spin-orbit phase in the magnetic
phase by adding to Bext in Eq. �8� the simplified effective
spin-orbit field,

Bso�i → j� =



2mc2
i� �
n,n�i,j

Zn�1 − pn�
4���0�r − Rn�3�i�� ,

�10�

where the nearest-neighbor sum excludes the start site i and
end site j. A more complete derivation for the effective spin-
orbit field is presented for the case with no screening �no � in
the equation� and where all potentials contribute �no 1− pn in
the equation� in Ref. 4. Note that the integral 
i� 1

�r−Rn�3 �i� is
strictly speaking not convergent. However, in practice, the
orbit radius is never allowed to be smaller than the effective
atomic orbit of the valence state so that the cubic singularity
does not occur.

Before determining the various contributions to the Hall
conductivity, let us examine the effective masses which may
appear in the expressions which follow so that the meaning
is clear. There are three effective masses in the problem:

�1� the Kane-Luttinger mass �m�� which controls the ki-
netic energy in the starting Hamiltonian �effective-mass
Hamiltonian�;

�2� the spin-orbit mass which is equal to the bare electron
mass; and

�3� an effective mass which is a result of the sum rule, as
discussed in Refs. 24 and 25, and which can become the
diffusivity in strong disorder but is the Kane-Luttinger mass
in weak disorder.

A. Hopping contribution

The normal Hall term arising from the external B=Bz
term has been derived by the hopping interference method in
the pure diffusive limit and in the VRH limit12,17,26 and ap-
plied to the case of phonon-assisted hopping and percolation
in a one-band model. Thus, we may add the spin-orbit mag-
netic field to the external field and carry out the configura-
tional average as before. So we replace Bz by

Bz
ext + �0�1 − N�Mz + Bso, �11�

where

Bso =
i� 


2mc2 �
n,n�i,j

Zn�1 − pn�
4���0�r − Rn�3�i�
�z� 	 �hop
�z� ,

�12�

where 
�z� is the polarization of the holes and Mz is the
magnetization of the sample. The analysis can now be done
as previously. The high-density hopping system, for ex-
ample, has been treated analytically in Ref. 17 and the
phonon-assisted percolation regime in Refs. 16, 18, and 23.

The second term in Eq. �11� depends on the geometry of
the sample and is zero in thin films under normal fields.15

The sum in the third term runs over the third neighbor in the
triad and is configurationally averaged to the optimum
second-nearest-neighbor distance �as shown in Ref. 16�,
which is �Ri−Rn�= 
R3�T��� �

T0

T �1/4. Here, T0 is the renormal-
ized Mott temperature, defined previously.

Replacing Eq. �11� in the expression of Ref. 23 allows us
to calculate the Hall mobility �sign is negative for electrons
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and positive for holes� and conductivity as was done
before.23 Assuming a constant density of states, we obtain

�xy =
Re��xy�

Bz
ext Re��xx�

= e−�3/8��T0/T�1/4�1 +

�z�
Bz

ext �hop� , �13�

Re��xx� = �0e−�T0/T�1/4
=

1

Re��xx�
, �14�

and

�xy

Bz
ext =

�xy

Re��xx�
= e�5/8��T0/T�1/4�1 +


�z�
Bz

ext �hop� . �15�

Here �xy is the Hall resistivity, �0 is the conductivity prefac-
tor, and we have used N=1. Note that for the remainder of
the paper we will no longer distinguish the real part of the
conductivity from total conductivity since they are the same
at zero frequency.

The factor 3/8 in Eq. �13� is a consequence of averaging
over the third site in the triad 
2�R3�� 13

8 �
T0

T �1/4. When the
density of states is quadratic in energy, rather than constant,
we replace �

T0

T �1/4 by �
T0

T �1/2. This is also true for the Cou-
lomb gap hopping problem.16,23,27,28

Allen et al.8 observed an experimental exp�−�
T0

T �1/2� de-
pendence of conductivity. This is characteristic of a Coulomb
gap or hopping in a quadratic density of states. They also
found a near �xx

1/2 behavior of the Hall resistivity. This is also
reproduced by the present theory, as shown in Eq. �15�. Fi-
nally, they found normal and anomalous processes which
have opposite signs. The sign anomaly can be explained by
the sign of 
�z� which can be opposite to the overall magne-
tization since it refers only to carriers at the Fermi level.

The maximum strength of the AHE predicted by Eqs.
�13�–�15� is determined by the magnitude �hop. An estimate,
which includes the factor 1000 reduction due to the cube of
the average distance to the third neighbor, gives �3
�103 G. This spin-orbit term is somewhat too small at T
=25 K when the result is compared to the experimental data
in Ref. 8. The data suggest that the AHE is more important
than the normal Hall effect, even at an external field of 10 T.
The measured order of magnitude is close to the theory es-
timate only in the truly very low-temperature hopping re-
gime where AHE�NHE, i.e., when T�10 K or less. The
ratio of AHE to NHE is always roughly 5 or 6 when we look
at the data in the metallic regime. It seems therefore that
though the simple hopping model may be right for the truly
low-temperature hopping regime T	10 K at higher tem-
peratures the spin-orbit electrical fields which are needed to
produce the sideways force are larger than those predicted by
hopping theory.

This is possibly because, in this regime, the Hall charge
transport is, in fact, already activated to above the mobility
edge and is not really hoppinglike. We shall examine this
possibility in Sec. III B. This view is also supported by
magnetoresistance7 and thermopower data29 �although Osin-
niy et al.29 said otherwise�. Thus, the picture of the third site
in the triad providing the spin-orbit field is attractive, but the
effect produced by this mechanism is probably not large

enough to explain the quantitative values. States excited
above the mobility edge undergo skew scattering and intrin-
sic Hall scattering and feel the full effect of the lattice-
induced spin-orbit enhancement, as discussed by
Chazalviel,30 Berger,31 Fivaz,32 and Engel et al.33 The previ-
ous work of de Andrada e Silva et al.,34 for example, gives a
maximum enhancement factor of the bare coupling of the
form

�enh = � m

m��mc2

Eg

��2Eg + ��
�Eg + 3���3Eg + ��

, �16�

where � is the Kane spin-orbit coupling energy, Eg is the
energy gap of the semiconductor, and m� is the effective
mass. One can see that in GaAs, the enhancement of the
spin-orbit coupling is considerable. Thus, the pathways
above the mobility edge, even if not necessarily always
dominant for the ordinary transport, can be expected to be
dominant for the AHE. It is difficult to see where such an
enhancement would come from in hopping conduction. In-
cluding the many orbital bands will not strongly affect the
results in the hopping limit. The marginal but important con-
tributions from the hopping pathways forces us to now look
for other possible explanations or other contributions to the
hopping channel especially at higher temperatures.

B. Intrinsic Luttinger contributions from the region
above the mobility edge

Consider the contributions to transport coming from ex-
cited states below �for holes� the mobility edge. For delocal-
ized states, there are skew scattering Hall contributions due
to impurity potentials. This has been treated in Refs. 33 and
35. There is also an intrinsic Luttinger contribution which
can be written, in the language of Chazalviel,30 and as red-
erived to first order in spin-orbit coupling by Arsenault and
Movaghar.25 We write the transverse conductivity as

�xy
i =

e2

�

1

e �
�
�−

� f����
���

��B�z
��g�

zz, �17�

where

�z
� =

n�↑ − n�↓

n�↑ + n�↓
, �18�

e=−�e� for electrons, and e= �e� for holes. Finally, the zz com-
ponent of the effective g-shift tensor is

�g�
zz = �

�

�� 


4m2c2 ��V�r� � p�z��� 1

�� − ��


��Lz��� .

�19�

In the preceding equations, �B= e

m , f���� is the Fermi func-

tion, n�s is the number of electrons in the state � with spin s,
and �g�

zz is the zz component of the g-shift tensor. This com-
ponent can be related to the result first derived by Karplus
and Luttinger15 by writing approximately �g�� /�gap,
where �gap is a �Bloch� subband gap and � is the spin-orbit
coupling strength. The g-shift tensor is used here as in the
language of Chazalviel30 and includes the Bloch band en-
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hancement. Note that the intrinsic contribution given by Eq.
�17� apparently does not scale with the conductivity. How-
ever, this is only true in a highly ordered medium in which
the scattering linewidth is smaller than the intersubband en-
ergies. In this limit, it only appears as a lifetime term in a
basis of well-defined Bloch states. In a strongly disordered
system, there are no well-defined Kohn-Luttinger bands as
such, and the g-shift tensor will contain the relaxation-time
term in the denominator as well. When the linewidth is larger
than the dominant excitation energies in the sum, then the
relaxation time will enter the g-shift tensor and the Luttinger
term will also scale with resistance.

C. Magnetic field-dependent resistance and Hall-effect
contributions from the region above the mobility edge

We can now give a more complete formula which in-
cludes the hopping channel and the mobility edge contribu-
tions and which allows us to predict the magnetoresistance as
well. From the standard mobility edge transport theory5,36

and including the normal Hall effect, the skew scattering
contribution,33,35 and the intrinsic Karplus-Luttinger term,
we have

�xy = e2�
−�

�c

d��−
� fh���

��
�����Ddiff���� eBz

m���
����

+ 
�z�
����
�s���� + �xy,hopping�T� + �xy

i , �20�

where the so-called intrinsic AHE is

�xy
i = e2�

−�

�c

d��−
� fh���

��
�����




m�
�g����z��� , �21�

and

�xx = e2�
−�

�c

d��−
� fh���

��
�����Ddiff��� + �hopping�T� .

�22�

The second part of the first term in Eq. �20� is the skew
scattering contribution with 1

�s
denoting the skew scattering

rate. Here, fh��� is the hole distribution. In Eqs. �20� and
�22�, Ddiff��� is the band diffusivity at energy � and, by lo-
calization theory,36 is of the form

Ddiff��� = D0��c − �

�c
� �23�

near the mobility edge. Note that the Luttinger term contains
the quantum diffusivity 
 /m� and not the actual diffusivity
Ddiff. In Eq. �23� D0�1 cm2 /s, ���� is the density of states
for which one normally adopts an exponential form

���� = �0e−�/�0, �24�

with 0	−�	−�c, where �0 is the value at the Fermi level
and �0 measures the exponential steepness. The spin-orbit
coupling is contained in the g-shift factor. If the intersubband
gaps �gap is definable, the g-shift tensor is �g�� �

�gap
as in

the paper of Karplus and Luttinger.15 In highly disordered
alloys, there are no well-defined subband gaps, as assumed
by Karplus and Luttinger15 and Jungwirth et al.3 Then, one
has to evaluate the g-shift tensor more rigorously. The g
value of the Mn spin+hole complex ��1.98� has been mea-
sured by ferromagnetic resonance and is in the range of
−0.05–−0.2, holelike ��g	0�, and increases with Mn-hole
doping �see the review by Liu and Furdyna37�. Note that the
sign anomaly can again, as in hopping, be due to the fact that
the holes at the Fermi level are polarized opposite to the bulk
magnetism.

The hole Fermi function fh��� is, to a good approxima-
tion, a Boltzmann function when �� f −�c��kBT. The mobility
edge for holes is denoted by �c, and the energy dependence
of ����Ddiff��� dominates the longitudinal conductivity. The
anomalous skew scattering Hall contribution will be domi-
nated by the spin-orbit band term via 1

�s��� in Eq. �20�.33,35

The skew scattering contribution is not negligible because of
the very large spin-orbit coupling enhancement �104�, im-
plicit in Eq. �16�, when applied to GaMnAs. It is useful to
recall that Engel et al.33 estimated the skew factor to be �

�s

� 1
900 for Si-doped GaAs. Thus, when comparing �

�s

�z� with

�c� and noting that �� Dm�

��c−�� , �	�c �for holes�, we see that
the skew scattering band contribution to the AHE is compa-
rable to the ordinary Hall effect even near band edges. The
Luttinger term �Eq. �21�� is ��10−4–10−3���g
�z� and will
dominate when �g�10−3. We return to this later. The mo-
bility edge channel gives rise to very concrete formulas for
the behavior of the magnetoresistance and Hall effect. So
now we should examine the hopping magnetoresistance and
then we may be able to decide which mechanism dominates
in each range of B field and temperature.

IV. MAGNETORESISTANCE

A. Hopping magnetoresistance

The relative importance of the hopping and band-edge
weak localization contributions could, in principle, be tested
by measuring the corresponding magnetoresistance. We shall
now show that these are very different, both in structure and
in order of magnitude. It is surprising that magnetoresistance
was not measured by Allen et al.8 The magnetoresistance in
the apparently hoppinglike regime was measured in a simi-
larly low doped �2%� system by Van Esch et al.,7 who found
a strong negative magnetoresistance, which they interpreted
as being due to the orbital expansion of the localized states in
a B field. This, the authors suggested, is caused by the com-
petition between the spin Zeeman energy and the antiferro-
magnetic hole-Mn coupling. The external field is, however,
far too small to interfere with the strong antiferromagnetic
Jpd coupling of �0.5 eV.3 The magnetoresistance data of
Van Esch et al.7 actually look very similar to those obtained
for metallic films by Matsukura et al.38

Let us now examine the complete hopping magnetoresis-
tance and then evaluate whether it can explain the available
data7 in the insulating regime. The theory will also allow us
to make predictions concerning what should be the behavior
of the hopping magnetoresistance. Specifically, hopping spin
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and orbital MR do exist39–41 and have been discussed by
Movaghar and Schweitzer42 as applied to a-Si. Hopping
magnetoresistance usually has a positive contribution from
orbital shrinking of wave functions at very high field, B
�1 T �Mikoshiba effect�. This is a one-body effect. Local-
ized states also have a finite Hubbard U, so there is also a
two-body contribution to the spin-hopping magnetoresis-
tance. An electron from below the Fermi level can, in gen-
eral, hop to an empty state, or one which is already occupied
by another electron below. The doubly occupied level is
shifted up by the Hubbard U and, if U is not too large, this
takes some of the doubly occupied states to the Fermi level.
The jump to the occupied state takes place in the triplet or
singlet configuration. The triplet hop being forbidden, the
three triplet states would have to first convert into singlets.
This process depends sensitively on �small� transverse
�Bx , By� magnetic fields within the system.42 The triplet-to-
singlet transformation can also occur during the jump via the
spin-orbit coupling �l ·�. We can write the totality of effects
as42

�xx
hop�Bz,T� = �0e−�T0/T�1/4�1+��eBz/
�2�

��Ne + NS + NT��so

�0
+
��B


Bint�0��



�2

�2

��c��2 + 1
�� .

�25�

In Eq. �25�, � is a quantity that will be given below. Ne, NS,
and NT are probabilities that the hop is to a previously empty,
singlet, or triplet state. NS and NT depend on the magnetic
field as NS=

1−
�z�
4 and NT=

3+
�z�
4 . The direct spin-orbit-

assisted triplet-to-singlet hop is proportional to
�so

�0
, where �0

is the hopping �singlet� prefactor. The internal random fluc-
tuating magnetic fields Bint�t� which allow spin admixtures to
occur are mainly due to fluctuations in gxz and gyz and the
anisotropic part of the dipole-dipole interaction. For weak
coupling, we have


Bint
2 � = 
Bdip

2 � +
1

2
���gxzBz

ext�2 + ��gyzBz
ext�2� . �26�

The dipolar internal fields 
Bdip
2 �1/2 are of the order of the

ESR linewidths smaller than 10 mT; the g admixture is
�10−3. Saturation occurs when the frequencies correspond-
ing to Eq. �26� are comparable with typical hopping frequen-
cies. A similar model has been used recently to explain the
magnetoelectroluminescence in polymers.43

The Mikoshiba effect, mentioned earlier, is spin indepen-
dent and changes the phonon-assisted hopping rate as

Wij = Wij�0�e−2�Rij−Rij
3 /6��eB/
�2−�j−�i/kBT, �27�

averaged over the angle between the B field and R and with
� j ��i. At optimum hopping length, Rij

3 goes to 
��R�3�
= � 3

8 �3/4�
T0

T �3/4 and
�� j−�i�

kBT goes to 1
4 �

T0

T �1/4. Inserting these terms

in Eq. �27� gives us �= �
T0

T �1/2� 3
8 �3/4 1

6�4 in Eq. �25�. To lowest
order, we may neglect the change in T0 caused by Bz. There
is also an increase in the energy of the localized state. This

shift lowers the ionization energy to the mobility edge which,
in first-order perturbation theory, is

�i�Bz� = �i +
�eBz�2

2�i
2m

, �28�

where �i is the inverse localization length of the ith level.
Finally, there is also a small quantum interference magne-
toresistance contribution due to the fact that the hopping car-
rier could also virtually visit the second best neighbor site on
the way to its best neighbor. This contribution has been ana-
lyzed in detail by Schirmacher.44 The spatial part of the
transfer rate is, to first order, proportional to

�Tij�B��2 = �tij
0 e−ie/
B·�Ri�Rj�

+ �
l

til
0tlj

0

�i − �l
e−ie/
B·�Ri�Rl+Rl�Rj��2

. �29�

This now includes the direct transfer and the interference
term from a third site. This means that the
Miller-Abrahams45 hopping spatial factor, �tij

0 �2, should be re-
placed by Eq. �29� which is a small but magnetic-field-
dependent factor. One need take only one term in the l sum,
the second-nearest-neighbor term. The optimized second
neighbor 2�Ril and

�l−�i

kBT will also scale as ��
T0

T �1/4 but with a
constant factor �, which instead of the first neighbor values,
3/4 and 1/4, respectively, will be somewhat larger, �39 /32
for the spatial length and 13/32 for the energy. We have
already used this for the hopping Hall effect �Eq. �13��. The
sign depends on the geometry of the triad and can be positive
or negative.

We conclude that in Eq. �25�, we have to replace �0 by
�0
�

Tij�Bz�
tij

�2�, where 
 � is the spatial/energy average over the
best second neighbor �see Refs. 17 and 23 and references
therein for the definition of best second neighbor�. Keeping
the best third neighbor l and assuming Ri=0, we obtain a
quantum interference contribution,

��0�B� = �0
 2tiltlj

tij��i − �l�
�cos� e



B · �Rl � R j�� − 1�� .

�30�

The average in Eq. �30� is over the percolation network
and gives a negative magnetoresistance, according to
Schirmacher.44 In general, one has to note that all hopping
contributions below 1 T are at best a few per cent and no-
where near the large values observed by Van Esch et al.7

This completes the hopping analysis. Now consider the con-
tribution to the magnetoresistance coming from excitations
to the band edge.

B. Orbital magnetoresistance from the region
near the mobility edge

Following Khmelitskii et al.36 and Movaghar and Roth,46

we have for holes and small B fields the following shift for
the mobility edge:
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�� f�Bz� − �c�Bz�� � � f�0� − �c�0��1 + �� 
�c

�c�0��
1/2� ,

�31�

where � is a constant of order 1 and �c is the cyclotron
frequency of the holes. In Eq. �31�, we have neglected the
magnetic-field shift in the Fermi energy compared to that of
the mobility edge. This result is valid for fields at which,

�c	
 /�, cyclotron energy is less than the scattering broad-

ening and gives, from Eq. �31�, an exp�
��
�c�c�0��1/2

kBT � increase
in the conductivity over a limited field range.

The above describes the well-known orbital delocalization
effect. The fully self-consistent shift in the effective activa-
tion energy, i.e., the exact value of the one-body � f�Bz�
−�c�Bz� shift, which includes the ferromagnetic effects, and
high B fields is not known and this would need a detailed
study of localization in a disordered ferromagnet. However,
it can be inferred that in the present case, field-induced mag-
netic alignment is going to lower disorder and thus increase
the range of delocalized states by shifting �c�Bz ,Mz� up with
Mz and � f�Bz� down with Bz. At low temperatures, the mag-
netism can be saturated at relatively low fields and will not
change the electronic structure very much below Tc.

V. SUMMARY OF CONTRIBUTIONS INCLUDING
SPIN-DISORDER SCATTERING

We now have a theory which allows us to calculate, in
principle, the resistance, magnetoresistance, and Hall coeffi-
cient when the Fermi level is in the region of localized states.
We have also included the band region at, or just above, the
mobility edge including the spin scattering effects which can
be described by the CPA. This is discussed in Appendix C.
The Hall conductivity has already been given by Eq. �20�.

Consider first the complete longitudinal conductivity in
the presence of a magnetic field Bz and including orbital and
spin contributions from localized and delocalized states, this
is given by

�xx =
e2

�
�

�b

�c�Bz�

d��−
� f���

��
��edge���D0�� − �c�Bz�

�c�Bz�
�

+ �
−�

�b

d��−
� f���

��
��band���DCPA��,Bz� + �xx

hop�Bz� ,

�32�

where �b is the energy above which the CPA stops being
applicable. This energy is close to, but a little bit below, the
mobility edge �we are considering hole�. This expression in-
cludes the band edge �first term�, the high mobility band term
�second term�, and the third term, which is the hopping con-
tribution. In the first, or band-edge term, the magnetic-field
dependence is basically due to the B-field-induced delocal-
ization and not to spin. In the second, or band term, which
takes over at higher temperatures, the magnetoresistance is
mainly due to the spin-disorder scattering and is negative
because the magnetic field reduces the disorder and thus re-
duces the scattering rate. Figures 1 and 2 are examples of this

behavior. Unfortunately, we do not have the analytical form
for this term, but we have the numerical CPA results shown
in Figs. 1 and 2.

Also, from Eq. �15� of Ref. 7, we can create an approxi-
mation to the CPA from perturbation theory. By defining the
pd scattering time as

1

�pd
=

Jpd
2 �band���



�S�S + 1� − S2�Mz

Ms
�2

− S�Mz

Ms
�tanh� 3TcMz

2TS�S + 1�Ms
�� , �33�

the CPA diffusivity can be written as

DCPA � v���2 �pd�e

�pd + �e
, �34�

where �e is the nonmagnetic relaxation time and v���=� 2�

m� is
the band velocity at energy �. Equations �33� and �34� could
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FIG. 1. Relative magnetoresistivity in the CPA for carrier con-
centration p=0.1x for impurity concentration x=0.053 and Jpd

=0.35 W, with T as a parameter. W correspond to half the band-
width. Figure was taken from Ref. 4. This is the expected behavior
just below �hole� the mobility edge.
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FIG. 2. Resistivity as a function of temperature for various mag-
netic fields. Others parameters are x=0.053, ENM=EM=0, Jpd

=0.35 W, and p=0.1x. W correspond to half the bandwidth. The
solid line is the zero-field result, the dashed line is for �BB=1
�10−5 W, the dotted line is for �BB=1�10−4 W, and the dashed-
dotted line is for �BB=3�10−4 W. Figure was taken from Ref. 13.
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be interpreted as a first semianalytical approximation to the
CPA result �see Fig. 1 for a numerical evaluation�. The spin-
hopping term is given by Eq. �25�.

The density of states has been divided into three sections
corresponding to the region near the Fermi level �hopping�,
the region at the band edge �Eq. �24��, and the delocalized
region just below �c in the CPA regime. We have established
that when the Fermi level is in the region of localized states,
both band edge and hopping will, in general, contribute to
transport. The question is to what extend is it one or the
other? This obviously depends on temperature. However, it
has been argued that if the observed conductivity scales as
Mott’s law, then the explanation cannot be anything else but
VRH for all the transport coefficients. There are some facts
that speak against this simple interpretation. The ther-
mopower data are not hoppinglike.29 Our estimates show that
the AHE �Ref. 8� can, at very best, only be due to hopping
at very low temperatures. However, the Hall data, ther-
mopower, and magnetoresistance are all on different
samples, so one has to be very careful and rigorous and
examine all potential contributions.

Indeed, with the usual assumption of exponential density
of states �Eq. �24��, the first term in Eq. �32� will give an
activated band-edge transport behavior, so, in this limit, we
have the complete result,

�xx = e2D0�0�� f�Bz��
kBT

�c�Bz�
e−�f�Bz�−�c�Bz�/kBT+�c�Bz�/�0

+ �xx
hop�T,Bz� 	 �xx

BE�T,Bz� + �xx
hop�T,Bz� . �35�

Using Eq. �21� and replacing the quantum diffusivity 
 /m�

with the normal diffusivity, we have

�xy = �xx
BE�T,Bz�� eBz���c�Bz��

m�
+ �g��c�Bz��
�z��c

�
+ �xy

hop�T,Bz� . �36�

If we had kept the original form of Eq. �21�, the dependence
of the Hall coefficient �RH� on the resistance would be resis-
tance squared as observed in most ferromagnets.

To complete the analysis we also need Eq. �31�. The con-
clusion one can draw by looking at Eqs. �31�, �35�, and �36�
is that as temperature increases, an activated law should be
observed with a large exp���c

�
�c /�c /kBT� increase in con-
ductance with B �negative magnetoresistance�.

A word of caution: the shift in mobility edge with B field
as applied to electrons or holes assumes that the excited-state
wave function has time to build an Anderson level with all its
features.36 This is not necessarily true for highly excited
states. As an example, take a-Si:H where no such negative
MR is observed despite activation above the mobility edge.
In the present case, the mobility edge is very close to the
Fermi level so that it is reasonable to assume that this mecha-
nism is also operating.

Van Esch et al.7 fitted their data to a �

�c

kBT �1/3 law. How-
ever, most often a Mott law is observed in conduction. Osin-
niy et al.29 analyzed the thermopower in low-doped insulat-
ing samples and observed an activated law �see Appendix B
for thermopower�. The resistance they measured also looks

activated, although the authors do not explicitly state it. So
their data would agree with the band-edge formulas. From
this, one would have to conclude that both band-edge trans-
port and hopping are observed, depending on the sample and
the transport coefficient. However, when we examine the or-
der of magnitude of the hopping magnetoresistance we have,
at most, a few percent, even at very high fields. The data of
Van Esch et al.7 on magnetoresistance give us a strong clue
as to what might be happening. They have a few hundred
percent MR but with Mott-type conductivity. Finally, we
have one last question to examine. We need to investigate
what other mechanism can give us a Mott-type law for con-
duction but a giant magnetic bandlike magnetoresistance and
AHE. Let us examine this possibility before we come to a
final decision on the mechanism.

A. Mott law from correlation holes or granularity

The influence of correlations was treated by Anglada et
al.9 and more recently by Dunford et al.11 in the context of
transport in polymers, granular systems, and nanoparticle
composites. The point is that in highly correlated systems,
the density of excited states at the band edge need not, and in
general will not, be exponential. Coulomb energies and spin
fluctuations can modify the excited-state spectrum. Though
the exponential structure for ���� is reasonably well estab-
lished in systems which are weakly correlated, such as non-
magnetic amorphous semiconductors,47 one knows that in
electron and spin glasses, this is not the case and the final-
state interactions are important. When an empty state just
above the Fermi level is filled by an electron excited from
the valence band, the delocalized hole created in the valence
band is not immediately neutralized. The hole which is cre-
ated recombines elsewhere in the material, with an electron
from below the Fermi level, and in this way, charge has been
transported. The process of the electron separating itself
from its hole is complex in a highly correlated spin system
such as GaMnAs. Here, it is the carriers which cause the spin
alignment in the first place. We can expect the density of
states for excitations in such a system to be more sharply cut
off at small energies. We shall see that the proposed structure
will reproduce a Coulomb glass-type behavior with
temperature.48 A similar situation is encountered in granular
systems9,46 where Mott-type laws are observed as a result of
intergrain thermally or fluctuation-assisted tunneling.49

Granularity is also expected in these materials. Indeed we
can simulate this behavior with a density of states per vol-
ume of the form

�edge��� = �bande
−��g/��f − �� + �l�

�
, �37�

characteristic of correlated or granular systems, with 0	�
	1 and where �g and �l are constants which measure steep-
ness and the density of states at the Fermi level. Finally, �band
is a constant.

Knowing the density of states at the band edge, we can
now proceed to evaluate the Hall effect, longitudinal conduc-
tivity, and magnetoresistance at the band edge. To see how
we can get a Mott-type law from extended states, we use the
band-edge term of Eqs. �32� and �37� to get
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�xx =
e2

kBT
�

−�

�c�Bz�

d��bandD0��c�Bz� − �

�c�0�
�

�e−��f�Bz�−��/kBT−��g/��f�Bz� − �� + �l�
�
. �38�

A steepest-descent evaluation of Eq. �38� at low T gives for
�=1 /2 an exp�−�

T0

T �1/3� law �see Appendix A�. Here, the
Mott-type laws are a result of the pseudogap in the density of
states or a depletion of low-energy excitations created by
long-range correlations.

B. Quantitative comparison: VRH versus delocalized
band-edge conduction

To asses the relative importance of the various channels,
let us compare some values starting with �xx. The band-edge
conductivity with a correlation hole density of states evalu-
ated using steepest descent �Appendix A�, and the usual hop-
ping conductivity, would give us �with �=1 /3�

�xx�band� =
e2

�c�Bz�kBT
D0�band

���max − �� f�Bz� − �c�Bz���2e−3/2��g/kBT�1/4
,

�39�

where

�max = ��kBT�g
��1/�1+v�. �40�

With Eq. �31�, for holes, we obtain

�xx�band� =
e2

�c�0�kBT
D0�band

���max − �� f�0� − �c�0��1 + �� 
�c

�c�0��
1/2���2

�e−3/2��g/kBT�1/4
, �41�

and

��xx

�xx
=

2�max�c�0��� 
�c

�c�0��
1/2

��max − �� f − �c�0���2 . �42�

For the Hall conductivity, we obtain, to a good approxima-
tion ��=1 /3�, for holes

�xy�band� = �xx�band�� eBz���max�
m�

+ 
�g��max��
�z��max
� .

�43�

Whereas for VRH hopping �without the magnetoresistance
terms� we have

�xx�hopping� =
e2

4�2��� f��3

4
�T0

T
�1/4�2

�0e−�T0/T�1/4
.

�44�

It is understood that the T1/4 factors are chosen to be the
same so that this determines the density of states parameters

�g. Thus, �3 /2�4�g /kB=T0. The quantities are �band
�1020–1021 / cm3 eV, D0�10−4 m2 /s, and ��� f�
�1017–1019 / cm3 eV. T0 or �g is fixed by experiment. From
the data of Allen et al.,8 we extract roughly T0=2.4�105,
T0=24�2.7�3 /kB��� f�. The localization radius corresponds
to a binding energy of 110 meV which is �3 nm for a light
hole. The corresponding ��� f��3�1019 / cm3 eV extracted
is a very large number and normally above the value required
for delocalization.

One can see that the band pseudohopping expression can
easily account for the dc conduction. We see that by selecting
�, one can create an e−�T0 / T�1/2

or e−�T0 / T�1/4
behavior without

variable range hopping. Thus, if some experiments give one
or the other law, it only means that the effective density of
states is different. This has nothing to do with VRH. Further-
more, from Eqs. �31� and �42�, it gives the correct order of
magnitude, the right sign, and nearly the exact form of the
magnetoresistance, whereas the hopping magnetoresistance
is nowhere near the right order of magnitude and structure.
The magnetism and large magnetoresistance observed by
Van Esch et al.7 at very low temperature suggest that inho-
mogeneity and clustering play an important role. Hopping
magnetoresistance would, however, seem to be the correct
explanation for the magnetoelectroluminescence data in the
work of Mermer et al.50 where effects are a few percent for B
fields of milliteslas, as in the magnetoresistance and photo-
conduction of a :Si.39,42,51

Finally, the same optimization applied to the Hall effect
gives, from Eq. �43�,

RH = � e���max�
m�

+

�g��max��
�z��max

Bz
� 1

�xx�band�
. �45�

In this form, we can see that the anomalous term easily
competes with the normal term since ��10−14s, 
�g�
�10−2–10−1, and 
�z��max

�0.1–1. Such a large effect is
very difficult to achieve with hopping interference paths over
third neighbors, even though the square-root dependence on
resistance predicted by hopping theory is actually closer to
experiment than the linear one predicted here in Eq. �45�.
The thermopower and resistance data by Osinniy et al.29 also
suggest band-edge conduction with the usual exponential
density of state �Eq. �24�� �see Appendix B�.

VI. DISCUSSION AND CONCLUSION

Our analysis suggests that hopping dominates only the
very low-temperature region, and even then, it is most likely
cluster-to-cluster hopping so that energy differences will de-
pend on the cluster magnetism and not just on disorder. For
temperatures above T�10 K, we believe that the Hall coef-
ficient, magnetoresistance, and thermopower are due to
band-edge conduction. The observed Mott-type laws are
most likely caused by Coulomb correlations. In band-edge
transport, any value of � between 0 and 1 can be expected.
The stronger the correlations, the smaller �. Experiment does
not give a unique value of �, but it is always band-edge
conduction which is observed. In band conduction, the car-
riers are subjected to incomparably stronger magnetoresis-
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tance and Hall forces then in hopping conduction. This gives
rise, in particular, to the anomalous Hall effect. In Appendix
B, we show that the conductivity and thermopower data of
Osinniy et al.29 also agree with the model of delocalized
band transport near the mobility edge. It appears that the
temperature dependence of the transport data for insulating
samples depends, to some extent, on sample preparation.
When the totality of the available data in the insulating re-
gime of GaMnAs, except those at the lowest of temperatures,
is examined, it appears to be either activated transport or
correlation band transport which is the dominant mechanism.
There are strong indications that Mott hopping plays a sec-
ondary role at this temperature and ferromagnetic concentra-
tion range. There is, rather, a transfer process by way of
which a localized hole is annihilated and created elsewhere
via thermal fluctuations and is a band carrier in the interme-
diate state where it lives long enough to be subject to the
band Hall forces and spin-disorder scattering. In other words,
the long-range band transfer mechanism that gives rise to the
ferromagnetism in the material is also the mechanism that
determines the transport. The charge-transfer process is pre-
dominantly over the band with a Shklovskii-Efros-type27 cor-
relation band edge. The picture we propose is similar to that
of Durst et al.52 for this regime. It is the dynamics of the
shared spins when looked at as real or virtual band excita-
tions, which determines the magnetotransport and Hall trans-
port. At very low temperatures there must be a region in
which hopping at the Fermi level dominates. It would be
interesting to look for it experimentally. We predict that in
this range the MR and Hall effect are given by Eq. �25�
together with Eqs. �30� and �15� and are much smaller.
Very recently, weak localization in GaMnAs has been
observed.53,54 This regime is not exactly the one we study
here �� f is a somewhat farther from the mobility edge in the
insulating regime than in the weak localization regime� but
their results are in agreement with our model.

We have presented a reasonably complete theory of trans-
port in magnetic semiconductors of the GaMnAs type, when
the Fermi level is in the region of localized states, in the
presence of disorder and magnetism. The available data are,
unfortunately, sparse and scattered and there does not seem
to be a complete set of data on any one set of samples. The
formulas presented here have a wide range of applications.
The principal result of the paper is that we conclude that
transport in Mn-doped GaAs is due to activated transport
rather than variable range hopping. Finally, the possibility of
magnetic-cluster-to-cluster hopping and tunneling should be
taken seriously and investigated in detail. The resulting mag-
netoresistivity and Hall-effect properties of such systems are
not easy to guess.
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APPENDIX A: STEEPEST-DESCENT INTEGRAL

Using a steepest-descent approach with Eq. �38� to calcu-
late the conductivity and Hall effect and neglecting the en-
ergy dependence, apart from the density of states and Fermi
function, we have an integral of the type �assume �l=0�

I � �
�−�f

�

d�e−�/kBT−��g/���
G��� . �A1�

We have changed the sign of the integral from “holes to
electrons” for convenience. The maximum of the integrand,
neglecting the energy dependence of G, is at

�max � ��kBT�g
��1/�1+v�, �A2�

provided that �max� ��c−� f�. Clearly this condition and �l
=0 are not always satisfied and depend on the material and
temperature. When this limit is not valid, the integral is con-
trolled by the lower limit and the conductivity is activated,
i.e.,

I � �
�−�f

�

d�e−�/kBT−��g/� + �l�
�
G���

� kBTG�� f − �c�e−��g/��f−�c�+�l�. �A3�

When it is valid, the best value can be substituted back and
gives a temperature dependence of the form

I �
�maxG��max�

2
e−�max/kBT−��g/�max�

� e−���g/kBT��/1+����/1+�+�−�/1+���, �A4�

which is a Mott-type law but without VRH.

APPENDIX B: THERMOPOWER

The energy transported Exx and the thermopower without
interaction effects S are given by Movaghar and
Schirmacher,28

Exx = �
−�

�c

d��−
� f���

��
��edge���D0�� − �c

�c
��� − � f� + Exx,hop,

�B1�

and

S =
eExx

�xxT
. �B2�

In the correlation model with �=1 /3 and for low enough
temperatures, given by �max� ��c−� f�,

S =
��kBT�g

��1/1+�

eT
. �B3�

This yields a T−1/4 law and a magnetic-field dependence,
which is part of the Coulomb glass energy �g�Bz� �effective
Mott T0� and not known at present.

In the exponential band-edge model �Eq. �24��, we have
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S =
�c�Bz� − � f�Bz�

eT
. �B4�

Finally, in VRH, the thermopower depends on the structure
of the density of states at the Fermi level. For a linear density
of states, it is of the form28,55,56

S �
kB

2��� f��TT0�1/2

e
. �B5�

The form which agrees with the experiments of Osinniy et
al.29 is the band-edge activated law Eq. �B4�. The activated
form is also what is reported in a-Si:H, where the exponen-
tial band-edge model �Eq. �24�� applies.47 The resistance
measured by Osinniy et al.29 appears to also be activated. It
seems that we have a material class with band conduction,
and where the usual amorphous exponential density of states
model applies. In this material type, Eq. �A2� does not apply,
and the integral Eq. �A1� is cut off at kBT above the mobility
edge. The transport is now controlled by the mobility edge
and Eq. �B4� follows. Magnetic thermopower measurements
in the insulating regime would be most useful, as they should
obey Eqs. �B4� and �B5� and help us understand the nature of
the transport mechanism. Pu et al.57 showed that in the me-
tallic regime, the magnetothermopower is anisotropic �de-
pends on the orientation of Mz to the current�. This is due to
spin-orbit scattering. Note that the hopping thermopower, ne-
glecting spin-flip energy transport, should also depend on the
magnetic field via the magnetic-field dependence of the den-
sity of states � and the localization length �−1 with T0=24
�2.7�3�Bz� / ��kB��� f�Bz� ,Bz��. Both spin-up and spin-down
bands will contribute at the Fermi level. The localized states
have a finite Hubbard U, so the full rigorous treatment is not
trivial and needs focused attention as done in Ref. 58 for the
finite U but B-field free case.

APPENDIX C: BAND REGION ABOVE THE
MOBILITY EDGE

The mobility edge contribution to the conductivity, de-
rived above, is due to the fact that magnetic fields and other
dephasing effects counteract the quantum Anderson localiza-
tion process. The B field moves the mobility edge up for
holes �down for electrons�. However, in the delocalized re-
gion, electrons �holes� are also subject to spin-disorder scat-
tering which also causes strong magnetoresistance. It may
well be that the spin-disorder band mechanism also contrib-
utes when we have the insulating scenario, despite the high

activation energy. For completeness and rigor we therefore
need to also examine the transport dominated by carriers
which are excited below �above� the mobility edge in the real
band region. When the band region starts is not entirely clear
but there is no reason why spin-disorder scattering should
not start at the mobility edge as well. The band transport
should therefore include the spin-disorder scattering contri-
bution as calculated using the Kubo formula.7 We know that
holes excited just below the mobility edge are well described
by the self-consistent CPA solution4,13 so we can use it. The
contribution from the CPA band conductivity can be written
��c=�c�Bz ,Mz�� as

�xx =
e2

��
�

−�

�c

d��−
� f���

��
�����DCPA��,Bz� , �C1�

where

����DCPA��� =



N
�

s
� d�kvx

2�Im�Gk,s�����2��� − �k,s� .

�C2�

Also we have

Gk,s��� =
1

� − �k,s − �s,CPA���
�C3�

In Figs. 1 and 2, we show the calculated curves for a param-
eter range which would correspond to transport at the mobil-
ity edge. The resistance results shown, multiplied by the ac-
tivation factor exp�

� f−�c

kBT �, would give us a measure of the
spin-disorder band contribution to the magnetoresistance at
low temperatures. We note that the extended state spin mag-
netoresistance is negative almost everywhere. This is a result
of the fully self-consistent single-site approximation which
treats both the magnetism and the transport on the same foot-
ing. The intuitive reason is that the material is more ordered
when the local moments are aligned. When disordered, the
holes are scattered from many types of potentials corre-
sponding to the six possible Sz orientation of the local Mn
5/2 moment. When a magnetic field is applied, it enhances
the order, and this reduces the resistance. Van Esch et al.7

showed that the resistance decreases with magnetization
Mz�Bz ,T�. We have used their formula to analytically simu-
late the CPA result coming from spin-disorder scattering in
Eq. �33�.

*Present address: Département de Physique and RQMP,
Université de Sherbrooke, Sherbrooke, Quebec, Canada;
lfarsena@physique.usherbrooke.ca

†Present address: Department of Electrical and Computer Engineer-
ing, Northwestern University, Evanston, IL, USA.
1 M. Holub, S. Chakrabarti, S. Fathpour, P. Bhattacharya, Y. Lei,

and S. Ghosh, Appl. Phys. Lett. 85, 973 �2004�.

2 A. J. Blattner and B. W. Wessels, J. Vac. Sci. Technol. B 20,
1582 �2002�.

3 T. Jungwirth, J. Sinova, J. Mašek, J. Kučera, and A. H. Mac-
Donald, Rev. Mod. Phys. 78, 809 �2006�.

4 L.-F. Arsenault, B. Movaghar, P. Desjardins, and A. Yelon, Phys.
Rev. B 77, 115211 �2008�.

5 N. F. Mott and E. A. Davis, Electronic Processes in Non-

MAGNETOTRANSPORT IN THE INSULATING REGIME OF… PHYSICAL REVIEW B 78, 075202 �2008�

075202-11



Crystalline Materials �Clarendon, Oxford, 1984�.
6 B. Movaghar, Philos. Mag. B 65, 1097 �1992�.
7 A. Van Esch, L. Van Bockstal, J. De Boeck, G. Verbanck, A. S.

van Steenbergen, P. J. Wellmann, B. Grietens, R. Bogaerts, F.
Herlach, and G. Borghs, Phys. Rev. B 56, 13103 �1997�.

8 W. Allen, E. G. Gwinn, T. C. Kreutz, and A. C. Gossard, Phys.
Rev. B 70, 125320 �2004�.

9 M. C. Anglada, N. Ferrer-Anglada, J. M. Ribo, and B.
Movaghar, Synth. Met. 78, 169 �1996�.

10 D. Emin, Phys. Rev. Lett. 32, 303 �1974�.
11 J. L. Dunford, Y. Suganuma, A.-A. Dhirani, and B. Statt, Phys.

Rev. B 72, 075441 �2005�.
12 A. A. Burkov and Leon Balents, Phys. Rev. Lett. 91, 057202

�2003�.
13 L.-F. Arsenault, M.Sc.A. thesis, École Polytechnique de Mon-

tréal, 2006.
14 B. Movaghar and R. W. Cochrane, Phys. Status Solidi B 166,

311 �1991�.
15 R. Karplus and J. M. Luttinger, Phys. Rev. 95, 1154 �1954�.
16 B. Movaghar, in Proceedings of the Ninth Conference on Amor-

phous and Liquid Semiconductors, edited by B. K. Chakraverty
and D. Kaplan �J. Phys. �Paris�, Colloq. 42, C4-73 �1981��.

17 B. Movaghar, B. Pohlmann, and D. Wuertz, J. Phys. C 14, 5127
�1981�.

18 B. Movaghar, M. Grunewald, B. Pohlmann, D. Wuertz, and W.
Schirmacher, J. Stat. Phys. 30, 315 �1983�.

19 A. Baldereschi and N. O. Lipari, Phys. Rev. B 8, 2697 �1973�.
20 G. A. Fiete, G. Zarand, and K. Damle, Phys. Rev. Lett. 91,

097202 �2003�.
21 T. P. Pareek and P. Bruno, Pramana, J. Phys. 58, 293 �2002�.
22 T. Damker, H. Bottger, and V. V. Bryksin, Phys. Rev. B 69,

205327 �2004�.
23 M. Gruenewald, H. Mueller, P. Thomas, and D. Wuertz, Solid

State Commun. 38, 1011 �1981�.
24 S. Datta, Phys. Rev. Lett. 44, 828 �1980�.
25 L.-F. Arsenault and B. Movaghar, arXiv:0801.1348 �unpub-

lished�.
26 J. A. McInness, P. N. Butcher, and J. D. Clark, Philos. Mag. B

41, 1 �1980�.
27 B. I. Shklovskii and A. L. Efros, Sov. Phys. Usp. 18, 845 �1975�;

J. Phys. C 8, L49 �1975�.
28 B. Movaghar and W. Schirmacher, J. Phys. C 14, 859 �1981�.
29 V. Osinniy, K. Dybko, A. Jedrzejczak, M. Arciszewska, W. Do-

browolski, T. Story, M. V. Radchenko, V. I. Sichkovskiy, G. V.
Lashkarev, S. M. Olsthoorn, and J. Sadowski, arXiv:cond-mat/
0409659 �unpublished�.

30 J.-N. Chazalviel, Phys. Rev. B 11, 3918 �1975�.
31 L. Berger, Phys. Rev. B 2, 4559 �1970�.
32 R. C. Fivaz, Phys. Rev. 183, 586 �1969�.
33 H. A. Engel, B. I. Halperin, and E. I. Rashba, Phys. Rev. Lett.

95, 166605 �2005�.
34 E. A. de Andrada e Silva, G. C. La Rocca, and F. Bassani, Phys.

Rev. B 50, 8523 �1994�.
35 L. E. Ballentine, in Liquid Metals 1976, IOP Conf. Proc. No. 30,

edited by R. Evans and D. A. Greenwood �Institute of Physics,
London, 1977�, Chap. 1, Pt. 2, pp. 188–199.

36 D. E. Khmel’nitskii and A. I. Larkin, Solid State Commun. 39,
1069 �1981�.

37 X. Liu and J. Furdyna, J. Phys.: Condens. Matter 18, R245
�2006�.

38 F. Matsukura, M. Sawicki, T. Dietl, D. Chiba, and H. Ohno,
Physica E �Amsterdam� 21, 1032 �2004�.

39 H. Mell and J. Stuke, J. Non-Cryst. Solids 4, 304 �1970�.
40 B. Kochman, S. Ghosh, J. Singh, and P. Bhattacharya, J. Phys. D

35, L65 �2002�.
41 P. A. Bobbert, T. D. Nguyen, F. W. A. van Oost, B. Koopmans,

and M. Wohlgenannt, Phys. Rev. Lett. 99, 216801 �2007�.
42 B. Movaghar and L. Schweitzer, J. Phys. C 11, 125 �1977�.
43 Y. Sheng, T. D. Nguyen, G. Veeraraghavan, O. Mermer, and M.

Wohlgenannt, Phys. Rev. B 75, 035202 �2007�.
44 W. Schirmacher, Phys. Rev. B 41, 2461 �1990�.
45 A. Miller and E. Abrahams, Phys. Rev. 120, 745 �1960�.
46 B. Movaghar and S. Roth, Synth. Met. 63, 163 �1994�.
47 H. M. Dyalsingh and J. Kakalios, Phys. Rev. B 54, 7630 �1996�.
48 A. Mobius, M. Richter, and B. Drittler, Phys. Rev. B 45, 11568

�1992�.
49 P. Sheng, Phys. Rev. B 21, 2180 �1980�.
50 O. Mermer, G. Veeraraghavan, T. L. Francis, Y. Sheng, D. T.

Nguyen, M. Wohlgenannt, A. Kohler, M. K. Al-Suti, and M. S.
Khan, Phys. Rev. B 72, 205202 �2005�.

51 H. Mell, Ph.D. thesis, Marburg University, 1973; Proceedings of
the Fifth International Conference on Amorphous and Liquid
Semiconductors, 1974, edited by J. Stuke and W. Brenig �unpub-
lished�, p. 203-24.

52 A. C. Durst, R. N. Bhatt, and P. A. Wolff, Phys. Rev. B 65,
235205 �2002�.

53 L. P. Rokhinson, Y. Lyanda-Geller, Z. Ge, S. Shen, X. Liu, M.
Dobrowolska, and J. K. Furdyna, Phys. Rev. B 76, 161201�R�
�2007�.

54 D. Neumaier, K. Wagner, S. Geißler, U. Wurstbauer, J. Sad-
owski, W. Wegscheider, and D. Weiss, Phys. Rev. Lett. 99,
116803 �2007�.

55 I. P. Zvyagin, Phys. Status Solidi B 58, 443 �1973�.
56 K. I. Wysokinski and W. Brenig, Z. Phys. B: Condens. Matter

59, 127 �1985�.
57 Y. Pu, E. Johnston-Halperin, D. D. Awschalom, and Jing Shi,

Phys. Rev. Lett. 97, 036601 �2006�.
58 M. Grunewald, B. Pohlmann, D. Wuertz, and B. Movaghar, J.

Phys. C 16, 3739 �1983�.

ARSENAULT et al. PHYSICAL REVIEW B 78, 075202 �2008�

075202-12


